GPU虚拟化技术

时间:2017-10-20 08:57

GPU的英文名称为Graphic Processing Unit,GPU中文全称为计算机图形处理器,由1999 年NVIDIA 公司提出。GPU这一概念也是相对于计算机系统中的CPU而言的,由于人们对图形的需求越来越大,尤其是在家用系统和游戏发烧友,而传统的CPU不能满足现状,因此需要提供一个专门处理图形的核心处理器。GPU 作为硬件显卡的“心脏”,地位等同于CPU在计算机系统中的作用。同时GPU也可以用来作为区分2D硬件显卡和3D硬件显卡的重要依据。2D硬件显卡主要通过使用CPU 来处理特性和3D 图像,将其称作“软加速”。3D 硬件显卡则是把特性和3D 图像的处理能力集中到硬件显卡中,也就是“硬件加速”。目前市场上流行的显卡多半是由NVIDIA 及ATI这两家公司生产的。

1.1、为什么需要专门出现GPU来处理图形工作,CPU为啥不可以?

GPU 是并行编程模型,和CPU的串行编程模型完全不同,导致很多CPU 上优秀的算法都无法直接映射到GPU 上,并且GPU的结构相当于共享存储式多处理结构,因此在GPU上设计的并行程序与CPU 上的串行程序具有很大的差异。GPU主要采用立方环境的材质贴图、硬体T&L、顶点混合、凹凸的映射贴图和纹理压缩、双重纹理四像素256 位的渲染引擎等重要技术。由于图形渲染任务具有高度的并行性,因此GPU可以仅仅通过增加并行处理单元和存储器控制单元便可有效的提高处理能力和存储器带宽。GPU设计目的和CPU截然不同,CPU是设计用来处理通用任务,因此具有复杂的控制单元,而GPU主要用来处理计算性强而逻辑性不强的计算任务,GPU中可利用的处理单元可以更多的作为执行单元。因此,相较于CPU,GPU在具备大量重复数据集运算和频繁内存访问等特点的应用场景中具有无可比拟的优势。

1.2、GPU如何使用?

使用GPU有两种方式,一种是开发的应用程序通过通用的图形库接口调用GPU设备,另一种是GPU自身提供API编程接口,应用程序通过GPU提供的API编程接口直接调用GPU设备。

1.2.1、通用图形库

通过通用的图形库的方式使用GPU,都是通过 OpenGL 或Direct3D这一类现有的图形函数库,以编写渲染语言(shading language)的方法控制 GPU 内部的渲染器(shader)来完成需要的计算。

目前业界公认的图形编程接口主要有OpenGL和DirectX这两种接口。OpenGL是当前可用于开发可交互、可移植的2D与3D图形应用程序的首选环境,也是当前图形应用最广泛的标准。OpenGL是SGI公司开发的计算机图形处理系统,是图形硬件的软件接口,GL为图形库(Graphics Library),OpenGL应用程序不需要关注所在运行环境所处的操作系统与平台。只要在任何一个遵循OpenGL标准的环境下都会产生一样的可视化效果。与OpenGL 类似,DirectX(DirecteXtension)也是一种图形API。它是由Microsoft创建的多媒体编程接口,并已经成为微软视窗的标准。为适应GPU应用的需求,DirectX则根据GPU新产品功能的扩充与进展及时地定义新的版本,它所提供的功能几乎与GPU提供的功能同步。

1.2.2、GPU自身编程接口

GPU自身提供的编程接口主要由提供GPU设备的两家公司提供,分别是括NVIDIA 的CUDA 框架和AMD(ATI)公司于2006年提出了CTM(Close ToMetal)框架(备注,最初是ATI公司生产GPU设备,后被AMD收购)。AMD的CTM框架现在已不在使用,主要是AMD(ATI)于2007 年推出了ATI Stream SDK架构,2008 年AMD(ATI)完全转向了公开的OpenCL标准,因此AMD(ATI)公司目前已没有独立的、私有的通用计算框架。

CUDA(ComputeUnified Device Architecture)是在2007 年6 月由NVIDIA公司发布的专用通用计算框架。使用CUDA进行通用计算编程不再需要借助图形学API,而是使用与C语言十分类似的方式进行开发。在CUDA编程模型中,有一个被称为主机(Host)的CPU 和若干个被称作设备(Device)或者协处理器(Co-Processor)的GPU。在该模型中,CPU 和GPU 协同工作,各司其职。CPU负责进行逻辑性较强的事务处理和串行计算,而GPU 则专注于执行线程化的并行处理任务。CPU、GPU各自拥有相互独立的存储器地址空间主机端的内存和设备端的显存。一般采用CUDA框架自己进行编程的都一些大型的应用程序,比如石油勘测、流体力学模拟、分子动力学仿真、生物计算、音视频编解码、天文计算等领域。而我们一般企业级的应用程序由于开发成本以及兼容性等原因,大多数都是采用通用的图形库来进行开发调用GPU设备。

1.3、GPU如何工作?

GPU 对于通用计算和图形处理的内部组件主要有两部分:顶点处理器(vertex processor)和子素处理器(fragment processor)。这种处理器具备流处理机的模式,即不具有大容量的快存/存储器可以读写,只是直接在芯片上利用临时寄存器进行流数据的操作。